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Beam-plasma interaction experiments with non-ideal 
plasma targets are being planned at RLNR/Tokyo-Tech.

Experiments performed so far using Tokyo-Tech 1.7 MV tandem accelerator: 
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Ideal (dilute hot) plasmas → “Linear stopping”：
▬ Induced decelerating field Eind ∝ q
▬ -dE/dx = q × Eind∝ q × q = q 2 （q: projectile charge）

Non-ideal (dense cold) plasmas → “Nonlinear stopping”:
▬ Induced decelerating field Eind ∝ qm (m < 1)
▬ -dE/dx = q × Eind∝ q × q m = q 1+m = q n (1 < n < 2)

Nonlinear effects are expected for projectile stopping
in dense （ne ≈ 1022 cm-3） plasmas in fusion targets．
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Perturbations to the plasma electrons are possible only for the collision 
parameters b smaller than screening length λ :

▬ 〈vr〉 : averaged relative velocity
If b is smaller than the classical collision
diameter b0, the perturbation is strong
enough to induce nonlinear effects:

Projectile-plasma coupling constant γ is defined
for projectiles moving in the plasma.
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The projectile-plasma coupling
strength is estimated by the
critical ratio γ ≡ b0/λ:
▬ Numerical calculation by a particle code

→ Nonlinear effects are clearly observable for γ > ≈ 0.1
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An electromagnetically-driven shock tube is being
developed to produce weakly-non-ideal plasma targets.

Discharge energy ≈ 0.1 kJ during ≈ 1 µs:
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Projectile:
▬ Projectile (tentative): 12.5 keV/u 91Nb
▬ Effective charge q ≈ 4

cf. averaged charge in cold H2 gas ≈ 3
Plasma target:
▬ Beam-plasma coupling constant γ > 0.1

to observe nonlinear effects
▬ High ionization degree α >> 0.5

to clearly observe plasma effects
▬ Target thickness > 5 mm

to eliminate tube wall effects
▬ Energy loss ∆E/E < ≈ 0.2

to define interaction energy 
▬ Compact size and low discharge energy

for installation in the beam line

Conditions to realize γ > 0.1 have been searched
by adjusting different projectile-target parameters.

Rankine-Hugoniot relations
(+ SESAME-EOS)

us
us

p1, ρ1,
kT1, u1 (= 0)

p2, ρ2,
kT2, u2

Shock front
↓

Behind the shock:
ne = 2.8×1018 cm-3,
kT = 1.6 eV,
α = 0.7, Γ = 0.22

→ γ =0.1!

Initial condition:
p1 = 5 Torr,
T = 300 K
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Goal of the R&D:
Shock speed us = 48 km/s
(Mach number M ≡ us/c = 36)
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Streak imaging of the shock front propagating in the tube:

The shock front was clearly observed on the streak images:

The shock velocity was measured by a fast
photography with a streak camera.
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Measured shock speed at the 
interaction point (x = 4 cm):
▬ Low initial pressure is favorable to 

reach higher shock speed
▬ us = 48 km/s (goal) is expected for 

discharge voltages of Vd ≈ 40-50 kV. 

So far M = 24 (us = 32 km/s) has been obtained
for p1 = 5 Torr at the interaction point. 
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Electron density of the plasma was determined
by laser interferometry with two different wavelengths.

A Mach-Zehnder interferometer was integrated on the shock-tube base:

time

λ1 = 488 nm
(Ar laser)

λ2 = 633 nm
(He-Ne laser)

Contribution of
neutral species
was canceled!
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ne behind (0.2 µs) the shock front
(lateral spatial distribution):
▬ So far ≈ 1017 cm-3 (α ≈ 0.2)
▬ Much better homogeneity than 

laser plasmas
▬ φ1 mm-beam can be used.

Spatial and temporal homogeneity was enough to 
perform the planned beam experiments.

ne at the interaction point
(temporal evolution at y = 0):
▬ decreases due to recombination

after passage of the shock.
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▬ ≈ constant (?) for ≈100 ns
▬ Pulsed beams with duration

≈ 100 ns can be used.
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Pressure requirements:
▬ Initial pressure p1 = 5 Torr
▬ Beam line pressure p0 < 10-5 Torr

Low energy (keV/u) heavy projectiles:
▬ can stop even by 1 µm plastic film

∴ Windowless target
Fast valve does not work!
Differential pumping system
with very small apertures:
▬ Target thickness (≈ 1 cm)

must be >> relaxation length δw.
▬ δw ≈ aperture diameter D (?)

∴ D must be < ≈ φ100 µm!

To establish a well-defined target thickness,
very small beam apertures are needed.

δw δw

e.g.
D = φ1 mm

≈ 1 cm

δw δw

e.g.
D = φ100 µm

PressureLarge aperture:

Pressure

Position x

Position x

Small aperture:
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Relationship between the tube pressure p1 and the chamber pressure p0
was investigated for different gas-flow rates.

A differentially-pumped gas cell with φ100 µm-apertures 
was employed for the test experiment with He. 

300 l/s
Turbo
molecular
pump

p0

φ100 µm aperture

Dummy
shock tube

20 µm Al foil

He gas

Test chamber

p1
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Measured results were fairly-well reproduced by a 
simple calculation assuming molecular flow. 

Experimental result using He gas:
▬ φ100 µm aperture < ≈ mean free path of He gas molecules (≈ 150 µm)
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▬ Solid line: calculation using molecular-flow conductance of a “thin” small aperture
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Si surface-barrier detector (SSD) was used to measure  
very low intensity beams through very small apertures. 

MCPs for TOF measurements:
▬ High time resolution (< ns)
▬ Sensitive to “beam current”,

not to particle energy 
▬ Single-particle detection

efficiency < 100%
▬ Very sensitive to surface 

conditions
▬ Expensive
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Direct energy measurement
by SSDs:
▬ Energy-sensitive, single-particle 

detection
▬ 100% detection efficiency
▬ Much more robust than MCPs
▬ Low time resolution (≈ µs)
▬ Unable to use for high intensity 

beamTypical time signal of a
bunched beam
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The beam deflector has to be synchronized to the shock wave:

For time-resolved measurements, the SSD has to be 
used in combination with a fast beam deflector.
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SSD output waveforms for measurements with MylarTM foil targets:
▬ Projectile: 800 keV-protons through two apertures
▬ Very low intensity (≈ 103 ions/s) beam through the apertures
▬ Fast beam deflector not yet in operation

Energy loss of each single projectile can be evaluated 
by measuring the height of each pulse from the detector.
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Pulse height distribution for many shots (= energy spectrum):
▬ Beam current was kept as low as possible to prevent “pile up” of pulses.

The statistical energy resolution is enough
to evaluate the projectile energy loss.
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Comparison between the experimental and calculated results:
▬ Circles : measurement with SSD
▬ Solid line : Monte-Carlo calculation using “SRIM2003”

The measured energy loss was in a good agreement 
with calculations using a Monte-Carlo code.
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Shock speed must be increased further by +50% (M = 24 → 36):
▬ Higher discharge energy
▬ High-voltage switch with lower impedance
▬ Square tube → cylindrical tube

to reduce friction losses (?)
Differentially-pumped gas cell works well:
▬ Aperture should be further reduced from φ100 µm to φ50 µm. 
▬ Alignment of two apertures will be tough!

Projectile energy loss was successfully measured by an SSD:
▬ Low-intensity beams through small apertures can be measured.
▬ Fast deflector is necessary for time resolved measurement. (R&D under way.)
▬ Noise due to plasma emission (?)

Atomic physics issues:
▬ Projectile charge q (effective charge) ≈ averaged charge?
▬ Charge-changing reactions of slow ions in partially-ionized plasmas

Summary
and outlook
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