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Beam-plasma interaction experiments with non-ideal
plasma targets are being planned at RLNR/Tokyo-Tech.

Experiments performed so far using Tokyo-Tech 1.7 MV tandem accelerator:
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Nonlinear effects are expected for projectile stopping
in dense n_,~ 10?2 cm= plasmas in fusion targets

|deal (dilute hot) plasmas — “Linear stopping” dEdx
Induced decelerating field E, , « q (e.9.)
-dE/dx =qxE,y, qxqg=q? q:projectile charge
Non-ideal (dense cold) plasmas — “Nonlinear stopping”:
Induced decelerating field E; , < g™ (m < 1)
-dE/dx =qxE_ 4 qxqm=q™*m=q"(1<n<2)
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Projectile-plasma coupling constant yis defined
for projectiles moving in the plasma.

Perturbations to the plasma electrons are possible only for the collision
parameters b smaller than screening length A : o Ap

b Vel <vr>:vth\/1+£vpr°i]2

a)p Vin

(v.) : averaged relative velocity —
If b is smaller than the classical collision ——
diameter b,, the perturbation is strong
enough to induce nonlinear effects:

2 2
€ _ m<Vr>2’ or b, = q¢ > Plasma coupling
41re, b, 47T£0m<vr> constant
The projectile-plasma coupling ) "
strength is estimated by the y = by _ 9& a0 _ V3q
e . 3 3/2
critical ratio y = by/A: A Ame,m(v,) Voo /)
Numerical calculation by a particle code 1+( Ahj

— Nonlinear effects are clearly



An electromagnetically-driven shock tube is being
developed to produce weakly-non-ideal plasma targets.

Discharge energy ~ 0.1 kd during = 1 us:
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Conditions to realize y> 0.1 have been searched
by adjusting different projectile-target parameters.

Projectile: Rankine-Hugoniot relations
Projectile (tentative): 12.5 keV/u °'Nb (+ SESAME-EQOS)
Effective charge g ~ 4 e A
cf. averaged charge in cold H, gas ~ 3 ShOCE front

Plasma target: Dy, 108 P4, P,
Beam-plasma coupling constant > 0.1 KTy Uy "l / kT4, uq (=0)

to observe nonlinear effects / \
High ionization degree o >> 0.5 Behind the shock:
to clearly observe plasma effects n, =2.8x10'8 cm3, p, =5 Torr,
Target thickness > 5 mm kT=1.6¢V, r=300K
to eliminate tube wall effects a=0.7,I'=0.22
Energy loss AE/E <~ 0.2 A
to define interaction energy
Compact size and low discharge energy Goal of the R&D:
for installation in the beam line Shock speed u, = 48 km/s

(Mach number M = u/c = 36)
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The shock velocity was measured by a fast
photography with a streak camera.

W Streak imaging of the shock front propagating in the tube: Slope
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W The shock front was clearly observed on the streak images:
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So far M = 24 (u, = 32 km/s) has been obtained
for p, = 5 Torr at the interaction point.
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Electron density of the plasma was determined
by laser interferometry with two different wavelengths.

A Mach-Zehnder interferometer was integrated on the shock-tube base:
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Spatial and temporal homogeneity was enough to
perform the planned beam experiments.

n, behind (0.2 ps) the shock front n, at the interaction point
(lateral spatial distribution): (temporal evolution at y = 0):
So far~ 1017 cm3 (a~ 0.2) decreases due to recombination
Much better homogeneity than after passage of the shock.
laser plasmas ~ constant (?) for 100 ns
®1 mm-beam can be used. Pulsed beams with duration
~ 100 ns can be used.
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To establish a well-defined target thickness,
very small beam apertures are needed.

Pressure requirements: Large aperture: A Pressure

Initial pressure p, = 5 Torr
Beam line pressure p, < 10-° Torr ow ow
. . . >
Low energy (keV/u) heavy projectiles: Position
can stop even by 1 um plastic film | |
. : e.g. —_—
. Windowless target Dz 41 mm $P1 ____________________
Fast valve does not work! o -
0
Differential pumping system
with very small apertures: Small aperture: A Pressure
Target thickness (~ 1 cm)
must be >> : ow ow
p-
ow ~ aperture diameter D (?) Position x
". D must be <= $100 um!
e.g. / | p1 I
D = $100 pm - Jomecismimis s
| .



A differentially-pumped gas cell with $100 um-apertures
was employed for the test experiment with He.

Relationship between the tube pressure p, and the chamber pressure p,
was investigated for different gas-flow rates.

$»100 um aperture

20 um Al foil

Dummy
300 I/s shock tube
Turbo
molecular
pump

Test chamber



Measured results were fairly-well reproduced by a

simple calculation assuming molecular flow.

Experimental result using He gas:
$100 um aperture < = mean free path of He gas molecules (~ 150 um)
Solid line: calculation using molecular-flow conductance of a “thin” small aperture
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If the orifice diameter is further reduced, the beam line
pressure can be as low as ~ 10 Torr.

Beam line pressure p, expected for operations with H, gas:
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Sl surface-barrier detector (SSD) was used to measure
very low intensity beams through very small apertures.

W MCPs for TOF measurements: @ Direct energy measurement

— High time resolution (< ns) by SSDs:

- Sensitive to “beam current’, - Energy-sensitive, single-particle
not to particle energy detection

- Single-particle detection - 100% detection efficiency
efficiency < 100% — Much more robust than MCPs

— Very sensitive to surface — Low time resolution (= pus)
conditions

- Unable to use for high intensity
beam

Typical time signal of a
bunched beam
measured by an MCP

- EXxpensive
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For time-resolved measurements, the SSD has to be
used in combination with a fast beam deflector.

The beam deflector has to be synchronized to the shock wave:
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Energy loss of each single projectile can be evaluated
by measuring the height of each pulse from the detector.

SSD output waveforms for measurements with Mylar™ foil targets:
Projectile: 800 keV-protons through two apertures
Very low intensity (= 103 ions/s) beam through the apertures
Fast beam deflector not yet in operation
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The statistical energy resolution is enough
to evaluate the projectile energy loss.

Pulse height distribution for many shots (= energy spectrum):
Beam current was kept as low as possible to prevent “pile up” of pulses.

Proton energy E (keV)
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The measured energy loss was in a good agreement
with calculations using a Monte-Carlo code.

Comparison between the experimental and calculated results:
Circles : measurement with SSD
Solid line : Monte-Carlo calculation using “SRIM2003”
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Summary
and outlook

Shock speed must be increased further by +50% (M = 24 — 36):
Higher discharge energy
High-voltage switch with lower impedance
Square tube — cylindrical tube :> D
to reduce friction losses (?)

Differentially-pumped gas cell works well:
Aperture should be further reduced from ¢$100 um to $50 um.
Alignment of two apertures will be tough!

Projectile energy loss was successfully measured by an SSD:
Low-intensity beams through small apertures can be measured.
Fast deflector is necessary for time resolved measurement. (R&D under way.)
Noise due to plasma emission (?)

Atomic physics issues:

Projectile charge q (effective charge) ~ averaged charge?
Charge-changing reactions of slow ions in partially-ionized plasmas




