High Energy Density Electron Beam Production by Laser Longitudinal Electric Field

S. Miyazaki, K. Sakai, S. Hasumi, R. Sonobe, T. Kikuchi, and S. Kawata

Graduate School of Engineering, Utsunomiya University, Japan

Contents

- High-energy and high-density electron beam generation by intense short pulse laser
- Electron acceleration by longitudinal laser electric field

Scaling law of maximum electron energy

Laser field distribution

Field distribution of TEM₁₀ + TEM₀₁ mode laser

Electron confinement by transverse ponderomotive force

Electron acceleration by longitudinal electric field

Acceleration mechanism

Phases of acceleration and deceleration

Ponderomotive force: $\sim \exp[2i(kz \cdot \omega t)]$

Longitudinal electric field: $\sim i \exp[i(kz - wt)]$

3

Simulation model & Parameter values

Pre-accelerated electron beam parameter values

Initial density: $n_i = 10^{12} \text{ (cm}^{-3})$

Initial energy: $_{i} \sim 6$

Laser parameter values

Intensity: $a_0 = eE_0/(m_e c) \sim 5$ Wavelength: =0.8 (µm) Spot size: w_0 = 15 (FWHM) Pulse length: L_z =5 (FWHM)

Single electron acceleration

Single electron acceleration

Electron bunch acceleration

Electron density distributions

7

Electron bunch acceleration

Electron bunch acceleration

Electron energy estimation

Longitudinal electric field at the central axis

$$E_z \sim \frac{4\sqrt{2}w_0}{kw(z)^2} E_0$$

Interaction length and electron energy gain in phase P₄

$$l_{1} \sim \lambda / [4(1 - \sqrt{1 - 1/\gamma_{i}^{2}})]$$

$$\gamma_{1} \sim \gamma_{0} + 2(l_{0} + e^{-1/2})\pi a_{0} w_{0} \tan^{-1}[l_{1} / z_{R}]$$

Interaction length and electron energy gain in phase P₃

$$l_2 \sim \lambda / [4(1 - \sqrt{1 - 1/\gamma_1^2})]$$

$$\gamma_1 \sim \gamma_0 + 2(1 + e^{-1/2})\pi a_0 w_0 \tan^{-1}[l_2 / z_R]$$

Acceleration in Phases P₃ and P₄

Electron energy estimation and parameter study

The maximum electron energy decreases with the increase of the laser spot size

Conclusions

High energy density electron beam generation by intense short pulse laser

- Electron confinement by transverse ponderomotive force
- Electron acceleration by longitudinal electric field
- Generation of high-energy & high-density electron bunch
- Low energy spread (<10 %)
- Scaling law of maximum electron energy