

Advances in Intense Ion Beam Experiments in the U.S.

<u>Outline</u>

- 1. Source and injector development
- 2. High brightness ion beams and electron cloud effects
- 3. Neutralized drift compression

P.A. Seidl

for the

Heavy Ion Fusion Virtual National Laboratory

U.S.-Japan Workshop on Heavy Ion Fusion and High Energy Density Physics **Utsunomiya University, Japan** September 29, 2005

1. Simplification, cost reduction of heavy-ion fusion driver front end

- high current density / beamlet
 - low emittance growth in merging process
 - Injection of elliptical distribution to match AG transport.

2005 goal: Complete the converging beamlets experiments on STS-500 [Source Test Stand 500 kV]

Completed experiments on merging multi-beamlets in a high current compact injector for HIF drivers

[620.27] UNLINITED DISTRIBUTION

(25.574) [649.59]

(63.970) [1624.84]

(188 (47

Merging Results (STS-500): Beamlets merge with little beam loss. Data analysis is underway.

We have completed the merging-beamlets injector experiment—learned how to build a compact injector for HIF drivers.

The experimental facility at LLNL is decommissioned: STS-100 will be relocated to LBNL, STS-500 may be relocated to LBNL for use by another group (IBT).

Our next injector development task is to develop a Na⁺ alumino-silicate source for NDCX. Also testing Li⁺.

2. High Brightness Beam Transport - electron effects on intense ion beams

2005 Goal: Advance our understanding of the physical processes leading to the accumulation of electrons in magnetic quadrupoles in the HCX

The High Current Experiment (HCX) is exploring beam transport limits

We are looking at fundamental questions in our e-cloud work

Primary electron emission

yield & velocity distribution

Secondary emission

□ yield & velocity distribution (comparison with codes)

Desorbed gas

mechanism, yield & velocity distribution

Accumulation & retention in quads

Ioss mechanisms, sources

Effects of electrons on beam

□ harder - must exaggerate sources because of short experiment

Efficacy of mitigation methods

Results are expected to scale to other accelerator regimes

Discovered that copious gas desorption in accelerators is due to electronic sputtering

HIF-VNL facilities ideal: energy range from nuclear dominating to electronic slowing dominating.

Intense beam excitation of gas – enables measuring velocity distribution of desorbed gas

Observation: desorbed gas in beam emits light

View expanding gas cloud from side – f(v₀) normal to hole plate [with gated camera or streak camera] **Follow-on Options:**

- Tilt target f(v₀) near grazing incidence
- Narrow ribbon target –
 f(v₀,θ) with gated camera
- Absolute calibration to obtain desorption coef.
- Other targets: NEG, ...

Benefits – needed to model time for gas to reach beam info on physical mechanisms of gas desorption

Images of the gas cloud show growth and decay as a function of time.

Line integral of images indicates an expansion velocity of up to a few mm/ μ s

time

Diagnostics in two magnetic quadrupole bores, & what they measure

8 "paired" Long flush collectors (FLL): measures capacitive signal + collected or emitted electrons from halo scraping in each quadrant.

3 capacitive probes (BPM); beam capacitive pickup $((n_b - n_e)/n_b)$. 2 Short flush collector (FLS); similar to FLL, electrons from wall. 2 Gridded e⁻ collector (GEC); expelled e⁻ after passage of beam 2 Gridded ion collector (GIC): ionized gas expelled from beam

A new computational "mover" relaxes the problem of short e⁻ timescales in magnetic field

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

*R. Cohen et. al., Phys. Plasmas, May 2005

0.0

0.2

0.4

0.6

0.8

secondary electrons

Exp / Sim Comparison suggest semi-quantitative agreement.

Signal from simulation is sum of three components

Retarding potential analyzer (RPA) measures energy distribution of expelled ions

- RPA an extension of ANL design (Rosenberg and Harkay)
- Can measure either ion (shown) or electron distributions
- Potential of beam edge ~1000 V, beam axis ~ 2000 V

Ref: Michel Kireeff Covo, to be published (UCB & LLNL SEGRF fellow working with A. Molvik)

The Heavy Ion Fusion Virtual National Laboratory

rerer

Retarding Potential Analyzer for e⁻ and ion energy scans

WARP (initialized with upstream (D2) data reconstruction Scintillator Image R = 40 mm

The particles measured are those resulting from the ionization of the background gas, which are then expelled during (ions) or immediately after (e-) the beam pulse.

Reconstructed 4D phase space derived from upstream optical diagnostic ⇒ Initialize PIC. Simulated transport captures the observed distribution distortions downstream.

3. Neutralized drift compression

"How can heavy ion beams be compressed to the high intensities required for creating high energy density matter and fusion ignition conditions?"

- Frontiers For Discovery In High Energy Density Physics

2005 Goal: Commission and conduct preliminary testing of the Neutralized Drift Compression Experiment

Transverse compression of beam

 ⇒ Completion of Neutralized Transport Experiment

 Longitudinal compression

 ⇒ Neutralized drift compression

Neutralized Transport Experiment (NTX) completed with quantitative agreement between simulation and experiment

Neutralized drift compression experiment (NDCX)

50 Fold Beam Compression achieved in neutralized drift compression experiment

Experiment and theory (LSP) demonstrate importance of neutralization

Solenoid transport experiment is ready for deployment in December 2005

Pulsed solenoid tested at 3 T

26

Secondary electron control to be assessed in solenoidal transport experiment

A new accelerator concept (PLIA) can lead to a near-term HED facility (NDCX-II) with 10x reduction in the \$ / MeV

Pulse Line Ion Accelerator (PLIA): a low frequency traveling wave accelerator based on simple distributed transmission lines*

V(z) Along the (air) Dielectric Helix

PLIA can be operated in the short pulse ("surfing") mode or the long pulse ("snowplow") mode

eāburg Hoera Fysicom Filistican Wiatticanh Alditado cara La byo ratory

31

BERKEL

Pulse Line Ion Accelerator Experiment (PLIA)

BERKELEY LA

WARP-3D simulation of NDCX1d experiment -- Beam dynamics inside the helix

33

We have designed a short pulse injector (NDCX-IC) which can serve as the front-end of NDCX-II

conclusion and summary

 Source and injector development: Beamlet prototype experiments successfully completed. Good confidence for compact, lower cost HIF injector.
 High brightness ion beams and electron cloud effects: Gas desorption mechanism: Energy dependence ⇒ electronic dE/dx Novel electron mover ⇒ speed up calculations 20x Encouraging comparisons between simulations and experiments Positioned to make significant contributions to IFE, HEP, NP
 Neutralized drift compression NTX - neutralized transport beam profile reduced to mm from cm. Significantly increased confidence in a neutralized HIF final focused scenario.

NDCX - ~50x longitudinal compression in preliminary experiments *Encouraging for planned exploration of HEDP*.

We are developing components of an experimental HEDP / WDM experimental facility: solenoid transport, short pulse injector, PLIA

