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Laser related topics will be given in this meeting by

* Implosion and Ignition Physics
H.Azechi, M.Murakami, K.A.Tanaka (ILE)
« WDM Physics with Ultra-short pulse Laser
H.Yoneda (UEC)

» Laser-Plasma Acceleration toward High Energy Physics
K.Nakajima (KEK)

 Monoenergetic Acceleration of Electrons by Laser Driven Plasma
K.Koyama (AIST)

ILE . Institute of Laser Engineering
UEC . The University of Electro-Communications
KEK : High Energy Accelerator Research Organization

AIST . National Institute of Advanced Industrial Science and Technology



Activities on Accelerator and/or Pulse-power based
High-Energy-Density Physics Researches in Japan

* Pulse Power driven WDM and Strong Shock Studies (TIT)
e |lon Source Development (TIT, RIKEN)

* Repetitive induction Modulator (TIT, KEK, JAERI)

* kHz Induction Voltage Modulator (TIT, KEK)

 Beam Physics in Final Transport (TIT, RIKEN, UU)

« Beam Plasma Interaction Experiments (TIT, RIKEN)

« Target Physics (ILE, UU)

 New Concept (ILE, UU, TIT,..)

— TIT: Tokyo Institute of Technology

— RIKEN: The Institute of Physical and Chemical Research
— KEK: High Energy Accelerator Organization

— JAERI: Japan Atomic Energy Research Institute

— UU: Utsunomiya University

— ILE: Institute of Laser Engineering, Osaka University



e Pulse-power-driven HED Physics

— EOS and transport coefficient

— Electromagnetically driven strong shock waves
* Accelerator based HED Physics

— Beam dynamics

— lon beam interaction with HED plasma



Experimental Setup
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Experimental Arrangement

Advantages of This Scheme

(1) Electrical conductivity is directly measured
by wire voltage and current.

(2) Density is measured by evolution of wire
radius.

(3) Pressure history can be measured by shock

wave trajecties in water.
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— Voltage

— Discharge current
> The voltage waveform depends on the wire materials.
> Waveforms are reproducible.
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> Conductivity curve has a bottom at ~500ns for Al and Cu-
Wire, at ~1.2us for W-Wire.
> About 10 times compared with Spitzer's conductivity.



Numerical Hydrodynamic Behaviors
depend strongly on EOS Model
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Comparison with numerical simulation




Semi-empirical fitting of hydrodynamic
behavior brings us EOS modeling
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Formation of 1-D strong shock wave

e 1-D assumption enables us to use simplified
analytical estimation
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Criterion for radiative shock wave

« 1-D simplified analytical estimation yields a
criterion* of shock speed for radiative regime,

From the requirement of Prad/Pthe > 1

1
S 7?]{4111 2
D= Drad= 72a“i [IH/S]

K : Bolzmann’ s Constant, a: Radiative constant

ni: Particle Density,  u 1: Particle mass

* S.Bouquet, et.al., Astrophysical J. Supp. 127, 245 (2000)
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Summary of pulse-power-driven
shock experiments

Quasi-1D strong shock waves can be formed

Shock Mach number exceeded 200 under low
pressure condition of Xe

When the front speed exceeded a critical value
Drad, the image structure changed

Results indicates formation of a radiative shock
wave



Accelerator based HED Physics

Possible Research Topics
e High Power Beam Dynamics
— Induction synchrotron, Beam Compression,
— Plasma Lens, Integrated simulation code
« Beam-(HED) Plasma Interaction
— Energy deposition profile
« HED Physics using lon Beam Produced Plasma
— With well-defined and large scale-length plasma



Concept for Waveform Control

: Typical Waveform of
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Arrangement of Devices/Cables

1st Step for 10 KV Acceleration in FY 2003
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All lon Accelerator (more by K.Takayama)

B Driven by controllable induction modulator

M Induction modulator works both for acceleration and confinement
B Can accelerate ions with arbitrary masses and charges

B Modification of KEK500MeV Booster is planning
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: C
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Typical Arrangement of All lon Accelerator
(K.Takayama et al.,)



Apply Bunching Voltage at each Gap @ for beam bunching
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Final Beam Bunching
II{-

Research of Beam Dynamics
during Final Beam Bunching

Pbl* 10GeV, Beam Current 400A=10kA
Buncher
Beam

Chamber

Transverse PIC Simulation with Initial KV

am

0 x—y

T. Kikuchi, K.Horioka, et.al., Phys. Rev. ST-AB 7 (2004) 034201.
T. Kikuchi, K.Horioka, et.al., J. Plasma Fusion Res. 80 (2004) 87.



For chlorine plasmas, ion energy of more than few tens MeV
IS necessary to occur the K-shell ionization.

10 17 Tokyo Institute of Technology
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T.Kawamura, Numerical Study on K-alpha Radiation from High Density Plasma by Energetic
Particles, (This meeting)



Consideration of Ka-radiation by ion beams for plasma
diagnosis. With spatial resolved observation of Ka-radiation,
plasma heating process can be understood clearer than the

traditional way of “TOF”.

Tokyo Institute of Technology

~100pm

High Z plasma

lon beam

hv

I ~1lcm
hv hv  hv hv

Ka from low charge state Ka from high charge state

Spatial resolved diagnosis of heating process is possible.




Beam-plasma interaction experiments using H
a dense z-pinch plasma at Tokyo Tech.

Large enhancement of energy losses of
Xenon ions was observed under target
plasma densities above 101° cm-3,
which was caused by an increase in
projectile effective charge due to some
density effects.
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An electromagnetically-driven shock tube is being
developed to produce weakly-non-ideal plasma targets.

Discharge energy ~ 0.1 kJ during ~ 1 us:
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For time-resolved measurement, the SSD has to be
used in combination with a fast beam deflector.

The fast beam deflector has to be synchronized to the shock wave:
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Driver beams interact with converter

plasmas having I" values of 0.1~1.
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The Principle of Thin-Foil-Discharge (TFD)
plasma generation

Exploding
Foil Plasma

\%4
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Capacitor Bank

Movable Gap Switch

Target Holder [J.Hasegawa; this meeting]

» Areal density keeps constant in the early stage of discharge.
» Dense plasma is easily available. (~0.01 n_ ;)
* Plasma effects on stopping power can be easily extracted.



Time evolution of TFD plasma
(Aluminum, 12 pm)

 TFD plasma expands freely into vacuum with time.
« Until 750 ns, the plasma boundary looks stable.
« At 820 ns or later, the surface became jaggy.



Proposed Research Project (2007-2012)
lon-Bunch Compression and Beam-Target Interaction Experiments

Micro-Beam Interaction Experiments
With Laser-Accelerated lons
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and LBL, LLNL, Princeton-U




Expected experimental range of pulse power and
accelerator driven HED physics research in Japan

Wire Discharged Plasma in Water Plasma Target
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Concluding remarks

 Compared with laser driven HED researches, we have
just begun to study pulse-power and/or accelerator
based HED physics

 There have been some advances in WDM physics,
strong shock wave researches and beam-plasma
Interaction experiments

* Design works for a modification of the KEK facility are
In the making stage and a 5-years US-J collaboration
project in the HED (fast ignition) physics has been
proposed



