

1

Pulsed Power Plasma Experiment - Generation of Photons in EUV Region -

Eiki Hotta

K.Horioka, A.Okino, M.Watanabe, T.Kawamura, K.Yasuoka, M.Masnavi, S.R.Mohanty

Department of Energy Sciences Tokyo Institute of Technology

Outline of Presentation

Tokyo Institute of Technology

• Z-pinch Based Discharge

Capillary Discharge Ne-like Ar Soft X-ray Laser

- Background
- Experimental Setup: Low Rep-Rate Operation
- Characteristics of Ne-like Ar Soft X-ray Laser

DPP EUV Light Source for Microlithography

- (This work is supported by NEDO and MEXT Grant-in-aid)
 - Background: Why EUV? Requirements
 - Experimental Setup
- Characteristics of DPP EUV Source

Summary

Application of Soft X-ray Laser

Tokyo Institute of Technology

X-ray diagnostics X-ray microscope X-ray holography

(c) Linum

Water window (2.33-4.36nm)

Images of malaria infected red blood cells (c) 2.4nm soft X-ray microscopy (d) Visible light microscopy

Principles of soft X-ray laser

Tokyo Institute of Technology

One of operational principle of plasma X-ray laser:

Soft X-ray Lasing by Fast Capillary Discharge

(V.N.Shlyaptsev, et al., SPIE Vol.2012, pp.99-110, 1993)

Tokyo Institute of Technology

Radiative Collisional Model

- 3p-3s Ne-like ArIX (~40-70 nm)
 - $r_p \sim 150-250 \ \mu m$, $N_e \sim (0.5-2) \times 10^{19} \ cm^{-3}$, $T_e \sim 60-90 \ eV$
 - r₀ ~ 2 mm, p₀ ~ 0.1-0.2 Torr,
 I_p ~ 10-12 kA, T/2 ~ 60-80 ns
- 3p-3s Ne-like KrXXVII (~17-30 nm)
 - $r_p \sim 50-100 \ \mu m$, $N_e \sim (2-5) \times 10^{20} \ cm^{-3}$, $T_e \sim 500-700 \ eV$
 - r₀ ~ 1 mm, p₀ ~ 2-4 Torr,
 I_p ~ 150-180 kA, T/2 ~ 15-25 ns
- 4d-4p Ni-like XeXXVII (~ 9.1-9.5 nm)
 - $r_p \sim 75-150 \ \mu m$, $N_e \sim (2-5) \times 10^{20} \ cm^{-3}$, $T_e \sim 300-600 \ eV$
 - r₀ ~ 1 mm, p₀ ~ 2-4 Torr,
 I_p ~ 200-270 kA, T/2 ~ 12-20 ns

Theoretically predicted lasing windows

Bennett's Relation

Experimental Setup

Tokyo Institute of Technology

Schematic

Photograph

SpecificationWater capacitor: 3nF, Max. 900 kV (1.2 kJ)Current: T/2=110 ns, 9-32 kA, $dI/dt = 2-8 \times 10^{11} A/s$ Capillary: Polyacetal, Pyrex or Alumina Ceramics, 3mm, 60-350 mm longFilling gas: 100-1000 mTorr Ar

Streak photograph

In order to obtain a laser amplification, it is necessary to produce thin plasma that has a laser gain. Side-on observations of plasma were made using Pyrex glass capillary.

Discharge conditions

- •Pyrex Capillary: l = 60 mm, d = 3 mm
- •Argon: 150 mTorr
- •Predischarge: 10 A

Waveform of discharge current

Effect of Pre-Ionization

Tokyo Institute of Technology

Pre-ionization is essential for production of stable plasma.

Directivity of Spike Output

Tokyo Institute of Technology

Discharge condition

- Capillary length : 150 mm, diameter : 3 mm
- Filling Ar pressure : 450 mTorr
- Preionization current : 10 A

To confirm the directivity of laser, the distance from the capillary to the XRD is changed from 120mm to 600mm

Gain-Length Product

Tokyo Institute of Technology

Spectroscopic Measurement

Tokyo Institute of Technology

Grazing Incidence Spectrometer (McPherson 248/310G)

> Discharge condition Capillary : 3, l = 150 mmI = 22 kAp = 300 mTorr

 λ (nm) Measured spectrum

Label	Series	Transition	(Å)
1		3s ³ P ₁ - 3p ¹ S ₀	431.123
2	Ar IX	3p ¹ P ₁ - 3d ¹ P ₁	450.660
3		3p ¹ P ₁ - 3d ¹ P ₁	465.118
4		$3s {}^{1}P_{1} - 3p {}^{1}S_{0}$	468.793
5		3s3p - 3s3d (J = 0-1)	473.934
6	Ar VII	3s3p - 3s3d (J = 1-2)	475.654
7		3s3p - 3s3d (J = 2-3)	479.379

After P.S.Antsiferov et al.,

Physica Scripta, Vol.62, pp.127-131, 2000

Double-Slit Interference Fringes

Tokyo Institute of Technology

U.S.-Japan Workshop on Heavy Ion Fusion and High Energy Density Physics, Sep. 28-30, 2005 at Utsunomiya University

Measurement of the spatial coherence

Tokyo Institute of Technology

Coherence degree: $\mu_{12}(\Delta d) = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \exp(-\frac{\Delta d^2}{2L_c^2})$ where L_c is coherence length

 $\mu_{12}(50 \ \mu m) = 0.60 \pm 0.05$

Measured coherence length is 50 μm

Coherence length reported by other group is $L_c = 190 \mu m$ for 450 mm capillary PHYSICAL REVIEW A 70, 023818 (2004)

Another Lasing?

MHD Simulation 1

Tokyo Institute of Technology

MHD Simulation 2

The evaluated spectrum predicts another strong lasing at the wavelength of λ = 42.6 nm at t = 37 ns, when T_e = 105 eV, N_e = 3.14X10¹⁸ cm⁻³ The lasing occurs by the transition 2p - 2sBe-like argon (Ar¹⁴⁺).

Current and Pressure Range of Lasing

Tokyo Institute of Technology

with adequate gas pressure.

Summary (soft X-ray laser)

Tokyo Institute of Technology

- Ne-like Ar (3p-3s) Soft X-ray Lasing was confirmed
 - Current of 9-32kA and half period of 110ns
 - Ceramic capillary : =3mm, *l* = 150 350 mm
 - Argon gas pressure: 150-800mTorr
 - Maximum *gl* =12 (g=0.8cm⁻¹) at 32kA, 500mTorr
 - Pre-discharge current: 5-15A
- Sufficient pre-discharge current is essential for
 - Production of uniform pre-ionized plasma
 - Suppression of instabilities of pinched plasma
 - Increase of laser output and improvement of reproducibility
- Possibility of another lasing transition was shown
 - Be-like Ar (2p-2s) ?
- Lasing at current of less than 10 kA may be possible
 - Lower laser output energy
 - Compact power supply
 - Higher rep-rate operation

Outline of Presentation

Tokyo Institute of Technology

• Z-pinch Based Discharge

Capillary Discharge Ne-like Ar Soft X-ray Laser

- Background
- Experimental Setup: Low Rep-Rate Operation
- Characteristics of Ne-like Ar Soft X-ray Laser

DPP EUV Light Source for Microlithography

(This work is supported by NEDO and MEXT Grant-in-aid)

- Background: Why EUV? Requirements
- Experimental Setup
- Characteristics of DPP EUV Source

Summary

ITRS Roadmap Potential Acceleration

Tokyo Institute of Technology

Why EUV (13.5 nm) ?

Requirements for EUV Light Source

Tokyo Institute of Technology

Item	Requirement	
Wavelength	13.5 nm	
EUV Power at IF	115 W	
(2% in-band @13.5 nm)	(100 Wafers/hour)	
Repetition Frequency	> 10-7 kHz	
Integrated Energy Stability	±0.3 %	
	(3σ over 50 pulses)	
Etendue	1-3.3 mm ² sr	
Source Cleanliness	30,000 hours	
(lifetime of illuminator)	(after intermediate focus)	

DPP Light Sources

Tokyo Institute of Technology

Dependence of Ion Fraction on T_e in Steady State

Ion fractions of Xe using steady - state ionization model 1 0.9 Pd - like Xenon Fraction 0.8 0.7 0.6 Xe⁺¹⁰ 0.5 0.4 lon 0.3 0.2 0.1 0 **1**0¹ 10[°] **10**¹ 10^{2} Electron Temperature (eV)

Optimum Xe plasma condition for EUV emission at 13.5 nm $T_e = 20 - 40 \text{ eV}$ $n_e = 10^{18} - 10^{19} \text{ cm}^{-3}$ (optically thin)

Pinch Dynamics

Experimental Setup

Tokyo Institute of Technology

Pulse power supply system

Tokyo Institute of Technology

Effect of dl/dt on Pinch Time and Plasma Radius

Tokyo Institute of Technology

Absolute in-band EUV power

Tokyo Institute of Technology

	Low <i>dl/dt</i> pulse	High <i>dl/dt</i> pulse
EUV output energy [mJ/sr/2%BW/pulse]	2.5	3.3
Max. solid angle [sr]	2π	2π
EUV energy at the source [mJ/pulse]	15.7	20.7
Input energy [J/pulse]	5.6	4.7
Conversion efficiency [%]	0.28	0.44

Effect of *dl/dt* on the visible spectra

Tokyo Institute of Technology

• Visible emission lines are identified in the each pulse system

- Impurities O and Al in low *dI/dt* pulse come mostly from the capillary : plasma capillary wall interaction
- Contact time between plasma and capillary in high dI/dt pulse is short enough to prevent impurities from being ablated

Effect of *dl/dt* and pressure on EUV pinhole images

Tokyo Institute of Technology

• For higher *dI/dt*

- Source size is smaller
- Position stability is better

Effect of *dl/dt* on position stability

Tokyo Institute of Technology

 $X \colon \pm 0.16 \text{ mm}$ Standard deviation $X \colon \pm 0.018 \text{ mm}$ $Y \colon \pm 0.13 \text{ mm}$ $Y \colon \pm 0.013 \text{ mm}$

- Peak intensity positions of 20 pinhole image were recorded
- Position stability of fast pulse is better than that of slow one

For the higher power and steady state operation

Tokyo Institute of Technology

Gas jet type Z-pinch discharge system

Tokyo Institute of Technology

Side view

- ♦ Cathode (nozzle)
- Xe nozzle diameter: 2 mm
- He nozzle diameter
 - Inner diameter: 11.6 mm Outer diameter: 12 mm
- ♦ Anode (diffuser)
- Inner diameter: 6 mm
- Outer diameter: 20 mm
- Conditions
- $V_{\text{charge}} = 9 \text{ kV}$
- Xe gas supplying pressure = 10 Torr
- Gap distance: d = 4 mm

U.S.-Japan Workshop on Heavy Ion Fusion and High Energy Density Physics, Sep. 28-30, 2005 at Utsunomiya University

Framing photographs (10 ns resolution)

Effect of gas curtain (EUV pinhole image)

With Gas Curtain (w/o diffuser)

He 12 sccm

Pinch cannot be observed in case of Ar gas curtain

Confinement by curtain gas is observed

Absolute in-band EUV energy

Tokyo Institute of Technology

 ♦ V_{charge} = 9 kV, Xe = 10 Torr, d = 4 mm, 100 Hz operation, without gas curtain

The EUV output in 2 %
bandwidth at 13.5 nm is 5.1
mJ/pulse (at 2π sr)

The available observation angle (±
8 degree) may lead to partial
obscuration of the source

♦ In spite of the low output energy, we believe that increasing the discharge current and improving the present nozzle design can achieve the high EUV yield

Visible spectra

Tokyo Institute of Technology

• The observed impurity lines of different ionization states of O and Al in capillary discharge come mostly from the alumina capillary wall

♦ No significant impurity contribution from the electrode materials is marked in the gas jet type Z-pinch discharge

Summary (EUV light source)

Tokyo Institute of Technology

• Higher energy transfer efficiency Lower stray inductance ■ Higher *dI/dt* Debris mitigation Tube less structure : radial collection **Gas curtain, Debris shield** Future plan

Tokyo Institute of Technology

Thank You for Your Attention