## プラズマセパレータを用いた高強度レーザーによる 高エネルギー電子ビームの生成

Dec. 15 2005

# 宇都宮大学大学院工学研究科 電気電子工学専攻 川田研究室 MT043217 酒井 計

## Background

近年のレーザー技術(CPA)の発達により、 高強度短パルスレーザーの生成が可能となった

◆ プラズマを媒体として電子を加速させるレーザー航跡場加速

真空中の電子バンチに高強度レーザーを照射させることによる 電子加速

◆ 高密度の薄いプラズマにレーザーを照射させることによる イオン加速

高強度レーザーを用いた荷電粒子加速器は加速勾配が非常に 高く、従来使われている加速器を小型にすることができ、粒子線 を用いたがん治療、新しい点光源技術などへの応用が期待され ている.

## **Purpose** (Plasma separator)



## **Purpose** (TEM<sub>00</sub>mode laser)



## **Purpose** (TEM<sub>10</sub>+TEM<sub>01</sub> mode laser)



# **Simulation model**



# Initial parameter values

#### Laser parameter

laser Intensity $1.8 \times 10^{19} \text{Wcm}^{-2}$  ( $a_0=2.6$ )pulse length50fsminimum spot size (radius) $3\lambda$ wave length $1.053 \mu \text{m}$ 

#### **Electron parameter**

Initial electron density1.0×1014 cm-3Initial electron temperature1.0eV

#### **Plasma parameter**

Initial plasma density <sup>3</sup> Initial plasma temperature

 $3n_c$  ( $n_c$ :critical density)

100eV

### Simulation results (Electron trajectory without plasma separator)



### Simulation results (Electron energy history without plasma separator)



## **Simulation results** (Electron trajectory with plasma separator)

With plasma separator
 Without plasma separator



プラズマセパレータ通過後,レーザーによる影響がなくなり電子の エネルギーは一定に保たれる

電子の最大エネルギー + with plasma separator = 17.5 (8.9[MeV]) + without plasma separator  $\gamma$ =7.9 (4.0[MeV])

# Simulation results (Electron energy distribution)



with plasma separator wit

#### without plasma separator



## Estimation of plasma instability (two-stream instability)

電子ビームがプラズマセパレータを通過する際の電子ビームとプ ラズマ中の電子間の 「流体不安定性におけるプラズマの成長率

$$\delta_{\max} = \omega_p \sqrt{\frac{\pi}{2} \frac{n_b}{n_p} \frac{V_b^2}{u_b^2}} \exp\left(-\frac{1}{2}\right)$$

 $\delta_{\max}$ :最大成長率,  $\bullet_{p}$ :プラズマ周波数,  $n_{b}$ :電子ビーム密度,  $n_{p}$ :プラズマ密度,  $V_{b}$ :電子ビーム速度,  $u_{b}$ :電子ビーム熱速度 今回のパラメータでは  $\bullet_{\max} \tau=0.39 < 1$ 

(τ:電子ビームのプラズマ通過時間)

電子バンチへの影響は少ない

## Estimation of plasma instability (Filamentation instability)

電子ビームがプラズマセパレータを通過する際の電子ビームとプ ラズマ中の電子間のフィラメンテーション不安定性におけるプラ ズマの成長率

$$\delta_{\max} \approx \frac{v}{3}\beta$$

$$\beta = \omega_b^2 / \omega_p^2 + k^2 c^2 / \omega_p^2$$

$$k = \left(\frac{2}{9}\frac{\omega_b^2}{v^2}\right)^{1/4} \frac{\omega_p}{c}$$
· · 衝突周波数  
c: 光速  
 $\omega_p: プラズマ周波数$ 
 $\omega_p: プラズマ周波数$ 
  
パラメータでは
  
= 1.39×10<sup>-4</sup><1  
(\* 衝突周波数  
こ: 光速  
 $\omega_p: \mathcal{O} = \mathcal{O}$ 

今回の

 $\delta_{\rm max}$ 

## Estimation of collisional energy loss

電子ビームがプラズマセパレータを通過する際の 電子ビームのエネルギーロス

$$\left\langle \frac{d\varepsilon}{dt} \right\rangle \cong -\frac{e^4 \ln \Lambda}{4\pi \varepsilon_0^2} \left( \frac{n_p}{m_e} \right) \frac{1}{V_b}$$

*dɛ/dt*:電子のエネルギーロス, e:電荷量lh ∧:クーロ対数, m<sub>e</sub>:電子質量

今回のパラメータではセパレータ中を電子が 通過する際の電子のエネルギーロスは 1.31[eV]

# Simulation results (parameter study)



プラズマセパレータの位置を変えたときの加速された電子バンチの 平均エネルギー(左図), エミッタンスの変化(右図)